Minor reorganization and added SDL2 Experiment 12

- Experiment 12 has a moving camera and wider playfield. Getting pretty cool now.
This commit is contained in:
Barry Kane 2023-02-14 23:35:01 +00:00
parent 5a3d7ed302
commit e446a6c796
13 changed files with 355 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1023 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 992 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1004 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 981 B

View File

@ -0,0 +1,353 @@
// SDL Experiment 12, Barra Ó Catháin.
// ===================================
#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <SDL2/SDL_timer.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
typedef struct xyVector
{
double xComponent;
double yComponent;
} xyVector;
// Calculate the vector from point A to point B:
static inline void xyVectorBetweenPoints(long ax, long ay, long bx, long by, xyVector * vector)
{
vector->xComponent = bx - ax;
vector->yComponent = by - ay;
}
// Normalize a vector, returning the magnitude:
static inline double normalizeXYVector(xyVector * vector)
{
double magnitude = sqrt(pow(vector->xComponent, 2) + pow(vector->yComponent, 2));
vector->xComponent /= magnitude;
vector->yComponent /= magnitude;
return magnitude;
}
// Get the angle between vectors:
static inline double angleBetweenVectors(xyVector * vectorA, xyVector * vectorB)
{
double dotProduct = (vectorA->xComponent * vectorB->xComponent) + (vectorA->yComponent * vectorB->yComponent);
double determinant = (vectorA->xComponent * vectorB->yComponent) - (vectorA->yComponent * vectorB->xComponent);
return atan2(dotProduct, determinant) / 0.01745329;
}
static inline void rotateXYVector(xyVector * vector, double degrees)
{
double xComponent = vector->xComponent, yComponent = vector->yComponent;
vector->xComponent = (cos(degrees * 0.01745329) * xComponent) - (sin(degrees * 0.01745329) * yComponent);
vector->yComponent = (sin(degrees * 0.01745329) * xComponent) + (cos(degrees * 0.01745329) * yComponent);
}
// Add vector B to vector A:
static inline void addXYVector(xyVector * vectorA, xyVector * vectorB)
{
vectorA->xComponent += vectorB->xComponent;
vectorA->yComponent += vectorB->yComponent;
}
// Add vector B to vector A, scaled for units per frame:
static inline void addXYVectorDeltaScaled(xyVector * vectorA, xyVector * vectorB, double deltaTime)
{
vectorA->xComponent += vectorB->xComponent * (0.001 * deltaTime) * 60;
vectorA->yComponent += vectorB->yComponent * (0.001 * deltaTime) * 60;
}
// Multiply a vector by a scalar constant:
static inline void multiplyXYVector(xyVector * vector, double scalar)
{
vector->xComponent *= scalar;
vector->yComponent *= scalar;
}
void DrawCircle(SDL_Renderer * renderer, int32_t centreX, int32_t centreY, int32_t radius)
{
const int32_t diameter = (radius * 2);
int32_t x = (radius - 1);
int32_t y = 0;
int32_t tx = 1;
int32_t ty = 1;
int32_t error = (tx - diameter);
while (x >= y)
{
// Each of the following renders an octant of the circle
SDL_RenderDrawPoint(renderer, centreX + x, centreY - y);
SDL_RenderDrawPoint(renderer, centreX + x, centreY + y);
SDL_RenderDrawPoint(renderer, centreX - x, centreY - y);
SDL_RenderDrawPoint(renderer, centreX - x, centreY + y);
SDL_RenderDrawPoint(renderer, centreX + y, centreY - x);
SDL_RenderDrawPoint(renderer, centreX + y, centreY + x);
SDL_RenderDrawPoint(renderer, centreX - y, centreY - x);
SDL_RenderDrawPoint(renderer, centreX - y, centreY + x);
if (error <= 0)
{
++y;
error += ty;
ty += 2;
}
if (error > 0)
{
--x;
tx += 2;
error += (tx - diameter);
}
}
}
int main(int argc, char ** argv)
{
SDL_Event event;
int width = 0, height = 0;
uint32_t rendererFlags = SDL_RENDERER_ACCELERATED;
uint64_t thisFrameTime = SDL_GetPerformanceCounter(), lastFrameTime = 0;
long positionX = 512, positionY = 512, starPositionX = 0, starPositionY = 0;
double deltaTime = 0, gravityMagnitude = 0, gravityAcceleration = 0, frameAccumulator = 0;
bool quit = false, rotatingClockwise = false, rotatingAnticlockwise = false, accelerating = false;
xyVector positionVector = {512, 512}, velocityVector = {1, 0}, gravityVector = {0, 0}, engineVector = {0.16, 0}, upVector = {0, 0.1};
// Initialize the SDL library, video, sound, and input:
if (SDL_Init(SDL_INIT_EVERYTHING) != 0)
{
printf("SDL Initialization Error: %s\n", SDL_GetError());
}
// Initialize image loading:
IMG_Init(IMG_INIT_PNG);
SDL_SetHint(SDL_HINT_RENDER_SCALE_QUALITY, "2");
// Create a rectangle to put the ship in:
SDL_Rect shipRect;
shipRect.w = 32;
shipRect.h = 32;
// Create an SDL window and rendering context in that window:
SDL_Window * window = SDL_CreateWindow("SDL_TEST", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, 700, 700, 0);
SDL_Renderer * renderer = SDL_CreateRenderer(window, -1, rendererFlags);
// Load in all of our textures:
SDL_Texture * idleTexture, * acceleratingTexture, * clockwiseTexture, * anticlockwiseTexture, * currentTexture,
* acceleratingTexture2;
idleTexture = IMG_LoadTexture(renderer, "./Experiment-12-Images/Ship-Idle.png");
clockwiseTexture = IMG_LoadTexture(renderer, "./Experiment-12-Images/Ship-Clockwise.png");
acceleratingTexture = IMG_LoadTexture(renderer, "./Experiment-12-Images/Ship-Accelerating.png");
anticlockwiseTexture = IMG_LoadTexture(renderer, "./Experiment-12-Images/Ship-Anticlockwise.png");
acceleratingTexture2 = IMG_LoadTexture(renderer, "./Experiment-12-Images/Ship-Accelerating-Frame-2.png");
// Enable resizing the window:
SDL_SetWindowResizable(window, SDL_TRUE);
while (!quit)
{
lastFrameTime = thisFrameTime;
thisFrameTime = SDL_GetPerformanceCounter();
deltaTime = (double)(((thisFrameTime - lastFrameTime) * 1000) / (double)SDL_GetPerformanceFrequency());
// Check if the user wants to quit:
while (SDL_PollEvent(&event))
{
switch (event.type)
{
case SDL_QUIT:
{
quit = true;
break;
}
case SDL_KEYDOWN:
{
switch (event.key.keysym.sym)
{
case SDLK_LEFT:
{
rotatingAnticlockwise = true;
break;
}
case SDLK_RIGHT:
{
rotatingClockwise = true;
break;
}
case SDLK_UP:
{
accelerating = true;
break;
}
default:
{
break;
}
}
break;
}
case SDL_KEYUP:
{
switch (event.key.keysym.sym)
{
case SDLK_LEFT:
{
rotatingAnticlockwise = false;
break;
}
case SDLK_RIGHT:
{
rotatingClockwise = false;
break;
}
case SDLK_UP:
{
accelerating = false;
frameAccumulator = 0;
break;
}
default:
{
break;
}
}
break;
}
default:
{
break;
}
}
}
// Wrap the position if the ship goes interstellar:
if(positionVector.xComponent > 4096)
{
positionVector.xComponent = -2000;
velocityVector.xComponent *= 0.9;
}
else if(positionVector.xComponent < -4096)
{
positionVector.xComponent = 2000;
velocityVector.xComponent *= 0.9;
}
if(positionVector.yComponent > 4096)
{
positionVector.yComponent = -2000;
velocityVector.yComponent *= 0.9;
}
else if(positionVector.yComponent < -4096)
{
positionVector.yComponent = 2000;
velocityVector.yComponent *= 0.9;
}
// Store the window's current width and height:
SDL_GetWindowSize(window, &width, &height);
// Calculate the vector between the star and ship:
xyVectorBetweenPoints(positionVector.xComponent, positionVector.yComponent, starPositionX, starPositionY, &gravityVector);
// Make it into a unit vector:
gravityMagnitude = normalizeXYVector(&gravityVector);
// Calculate the gravity between the star and ship:
if(gravityMagnitude != 0)
{
if(gravityMagnitude >= 215)
{
gravityAcceleration = 10 * (9000 / (pow(gravityMagnitude, 2)));
}
else
{
gravityAcceleration = 0.5 * (5000 / (pow(gravityMagnitude, 2)));
}
}
else
{
gravityAcceleration = 1;
}
// Scale the vector:
multiplyXYVector(&gravityVector, gravityAcceleration);
// Set the texture to idle:
currentTexture = idleTexture;
// Rotate the engine vector if needed:
if(rotatingClockwise)
{
rotateXYVector(&engineVector, 0.25 * deltaTime);
currentTexture = clockwiseTexture;
}
if(rotatingAnticlockwise)
{
rotateXYVector(&engineVector, -0.25 * deltaTime);
currentTexture = anticlockwiseTexture;
}
// Calculate the new current velocity:
addXYVectorDeltaScaled(&velocityVector, &gravityVector, deltaTime);
if(accelerating)
{
addXYVectorDeltaScaled(&velocityVector, &engineVector, deltaTime);
frameAccumulator += deltaTime;
currentTexture = acceleratingTexture;
if((long)frameAccumulator % 4)
{
currentTexture = acceleratingTexture2;
}
}
// Calculate the new position:
addXYVectorDeltaScaled(&positionVector, &velocityVector, deltaTime);
positionX = (long)positionVector.xComponent;
positionY = (long)positionVector.yComponent;
// Calculate the position of the sprite:
shipRect.x = (width/2) - 15;
shipRect.y = (height/2) - 15;
// Set the colour to black:
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
// Clear the screen, filling it with black:
SDL_RenderClear(renderer);
// Draw the ship:
SDL_RenderCopyEx(renderer, currentTexture, NULL, &shipRect, angleBetweenVectors(&engineVector, &upVector) + 90, NULL, 0);
// Set the colour to yellow:
SDL_SetRenderDrawColor(renderer, 255, 255, 0, 255);
// Draw a circle as the star:
DrawCircle(renderer, (long)(starPositionX - positionX) + width/2, (long)(starPositionY - positionY) + height/2 , 200);
// Draw a line representing the velocity:
SDL_RenderDrawLine(renderer, width/2, height/2,
(long)((width/2) + velocityVector.xComponent * 15),
(long)((height/2) + velocityVector.yComponent * 15));
// Set the colour to blue:
SDL_SetRenderDrawColor(renderer, 0, 0, 255, 255);
// Draw a line representing the direction of the star:
normalizeXYVector(&gravityVector);
multiplyXYVector(&gravityVector, 100);
SDL_RenderDrawLine(renderer, width/2, height/2,
(long)((width/2) + gravityVector.xComponent),
(long)((height/2) + gravityVector.yComponent));
// Present the rendered graphics:
SDL_RenderPresent(renderer);
}
return 0;
}
// ===========================================================================================
// Local Variables:
// compile-command: "gcc `sdl2-config --libs --cflags` SDL2-Experiment-12.c -lSDL2_image -lm"
// End:

View File

@ -17,3 +17,5 @@ These experiments are based around developing a gravity simulation.
into the Spacewar clone I'm planning on building. into the Spacewar clone I'm planning on building.
- Experiment 08: A modified version of the simulation where the mouse is the - Experiment 08: A modified version of the simulation where the mouse is the
"star." Fun to play aronud with. "star." Fun to play aronud with.
- Experiment 09: A version of the simulation where the ship can be steered and
accelerated.